ChatBuilder: LL.M-assisted Modular Robot Creation

Xin Chen', Xifeng Gao?, Lifeng Zhu'*, Aiguo Song! and Zherong Pan®

Abstract— Modular robotic structures simplify robot design
and manufacturing by using standardized modules, enhancing
flexibility and adaptability. However, the need for manual input
in design and assembly limit their potential. Current methods to
automate this process still require significant human effort and
technical expertise. This paper introduces a novel approach that
employs Large Language Models (LLMs) as intelligent agents
to automate the creation of modular robotic structures. We
decompose the modular robot creation task and develop two
agents based on LLM to plan and assemble the modular robots
from text prompts. By inputting a textual description, users
can generate robot designs that are validated in both simulated
and real-world environments. This method reduces the need
for manual intervention and lowers the technical barrier to
creating complex robotic systems.

I. INTRODUCTION

The development of modular robotic structures has
emerged as a powerful approach to simplify the robot de-
sign and manufacturing process. By decomposing complex
systems into standardized modules, it becomes possible to
reduce development cost and enhance the flexibility, scala-
bility, and adaptability of robotic systems. It is essential for
modular robots, with their inherent reconfigurability, to be
adaptable to different tasks and environments.

However, the modular design approach has limitations.
Most existing work is limited to single design tasks. For
example, previous work [1], [2] has optimized mobile robots
for different terrains or searched for suitable robotic arms
based on end-effector trajectories [3], but it struggles to han-
dle tasks with multiple design requirements simultaneously.
Furthermore, while existing work [4] has achieved some level
of automation and simplification in the design process, it still
necessitates significant manual effort and expertise. This not
only increases design time but also restricts the involvement
of non-expert users in robot design.

Recently, LLMs have demonstrated remarkable effective-
ness in understanding natural language and handling complex
tasks. Their success in diverse applications [5]-[7] suggests
that LLMs could be a powerful tool in automating and
simplifying the design process of modular robotic structures,
potentially reducing the complexity and technical barriers
associated with traditional methods.

In this paper, we propose a novel approach that uses
LLMs as intelligent agents to automate the design of modular

*Corresponding author, 1fzhulf @ gmail.com

1Xin Chen, Aiguo Song and Lifeng Zhu are with the State Key Labora-
tory of Digital Medical Engineering, Jiangsu Key Lab of Robot Sensing
and Control, School of Instrument Science and Engineering, Southeast
University, China

2Zherong Pan and Xifeng Gao are independent researchers at Seattle,
WA, USA

Project website: https://fodechain.github.io/ChatBuilder/

robotic structures. We divide the general task into two
subtasks and design two agents to complete them sepa-
rately. With only few-shot in-context learning, our agents
can understand and analyze input text, select appropriate
components, and ultimately assemble modular robots that
meet the requirements. We demonstrate the generated results
and validate the effectiveness of LLM-generated structures
in both simulated and real-world environments. Experiments
have proven that our method can design effective modular
robotic structures, which simplifies the design difficulty of
modular robots and lowers the barrier for non-experts.

II. RELATED WORK

We review related works on LLLMs, modular robotics and
automated robot design techniques.

a) LLMs: Leveraging LLLMs’ advanced reasoning and
contextual understanding capabilities [8], numerous studies
have explored their use as agents for complex planning
and generation tasks [5], [9], [10]. Chain-of-Thought [11]
and Chain-of-Code [12] improve model performance on
arithmetic, commonsense, and symbolic reasoning tasks.

In-context learning is one of the key methods for LLMs as
intelligent agents. LLMs perform analogical learning through
demos and can still demonstrate good performance without
explicit training [13]. Previous work [14] has also found that
LLMs are better at learning from code-style demos. Inspired
by these works, we attempt to enhance the LLM’s ability
to design modular robots through in-context learning, using
high-quality examples of modular robot designs.

b) Modular Robot: Unlike traditional robotic systems,
modular robots are composed of interchangeable and recon-
figurable units, allowing for easy customization and adap-
tation to different tasks. Early research [15], [16] utilizes a
predefined module library, including joints, links and power
units, to assemble robots. Similarly, [17], [18] also introduce
a module library. These modules can be assembled in various
ways to create different robots for different tasks.

In summary, these studies primarily focus on the hand-
crafted modular design of robot structures, while our work
intends to automatically plan the components of a modular
robot using LLMs.

c) Automated Robot Design: Previous research has
focused on the automatic design of modular robots. The
goal of these studies is to find the optimal way to assemble
modules from a library to meet the specific needs of a
given task. Evolutionary algorithms have been widely used in
modular design [19]. Some methods utilize optimization or
machine learning, such as terrain-based optimization of robot
structures [1], [2] and end-trajectory-based robot design [3],

https://fodechain.github.io/ChatBuilder/

.::| A robot capable of performing object grasping and moving operations.

P}
YcHigh-level Semantic Analysis

Based on the user's description, I need to design a
manipulator (robotic arm) with six degrees of freedom.

) | I
|_Leg-Wheel Leg

Module Library - Topology Position & Orientation
______________ - T e _. e I
| I | parti 1 e N T
| . ?} ' I | -Type:_loint | [:l. - ' | | :' . I
| Chassis Wheel Joint |\£{Selection| Function:Base joint | Part3 Part 2 |

| | Part3 Part2

. | & Planning Part 2 I | translate translate |
I :i * I .Type'Joim R RESr=ctichcoprectic ([x+offsetyz]) ([x.y.z+offset])
| 1 = -)| G o Part 2 Part 1 "= rotate([0,0,0]) rotate([0,90,0])

Link Mecanum-Wheel Function:Shoulder joint | | 50, ,90, |

| ? ? I | Part 3 || N I Part 1 :
| K g Type:Link | | translate

: o3 & voeLin || : (xyz) |

|| |

(a) Planner's workflow

Y¢Code Excution

o}
L=

YcAssemble Analysis

L ~
L 4 ~
‘ L 4 ~
- §~’

rotate([0,0,0])

(b) Assembler's workflow (c) Modular Robot Design

Fig. 1: Overview of ChatBuilder. ChatBuilder comprises two agents: the Planner and the Assembler. The user is required to provide input solely in textual
form. The Planner conducts a high-level semantic analysis of the input, identifying the necessary components and their respective functions within the
design. The Assembler, based on the Planner’s output, analyzes the topological relationships among components, including their position and orientation,
and generates standardized code. By executing this code, a modular robot design that meets the specified requirements can be obtained.

[4]. However, these methods often require multiple iterations
of optimization and high computational power. In addition,
while these approaches demonstrate excellent performance,
they tend to focus on a specific task.

Some research has explored more interactive ways to
design robots [20], [21], where users can quickly design
robots by dragging graphical symbols. In [22], users can
design the initial shape of a robot by sketching, but this
approach is still some distance away from realizing a fully
functional robot. The work in [23] investigate the use of
LLMs in design and manufacturing, revealing their potential.
Similar to the goal of [20], we also want to find a common
way to customize robots quickly and easily. In contrast, we
leverage the generality of text to develop a novel text-based
interaction, enabling users to design modular robots through
simple text input.

III. METHOD

Overall, our approach aims to leverage the excellent nat-
ural language understanding and code editing capabilities
of LLMs. After understanding the user’s requirements for
a modular robot, the LLM generates code that can model
the structure of the modular robot. However, achieving this
goal requires considering many issues. We first require a
module library to enable the LLM to select from it, where
the modular components are described in clear, interpretable
text. Additionally, a complete piece of code for modeling
a modular robot is complex and lengthy, making it difficult
for the LLM to accomplish the entire modeling task in one
go. Inspired by the studies on Chain of Thoughts [11] and
Chain of Code [12], we break down the overall task into
two subtasks: the planning of modular components and the
assembly of those components. Specifically, our proposed
method, ChatBuilder, consists of two agents: the Planner
and the Assembler, as shown in Fig. [l The Planner is

responsible for performing high-level semantic analysis of
the input text, identifying the necessary components, their
functions in the design, as shown in Fig[T](a). The Assembler
analyzes the topological relationships between components,
along with their position and orientation information, based
on the output of the Planner, then outputs standardized code,
as shown in Fig [I] (b). By executing the code, we can obtain
modular robot design that meet the design requirements, as
shown in Fig [T] (c). We will explain our approach in more
detail in the following sections.

A. Module Library

Before all the work, we first need to establish a module
library. OpenSCAD [24] was chosen for programming and
modeling due to its simple programming language and fast
compilation. We design the module library in OpenSCAD
by writing each modular component as a callable func-
tion. Specifically, our module library includes four types
of callable modular components: Link, Joint, Chassis, and
Wheel, as shown in Fig |I| (a). In addition to these basic
components, we incorporate high-level components into the
module library, including Leg, Leg-Wheel, and Mecanum-
Wheel. This expansion broadens the design space and pre-
vents the Planner’s design capability from being constrained
by module library limitations, which could lead to design
failures. Further details on the module library are available
on our website.

B. Planner

The Planner plays a crucial role throughout the design
process. It is responsible for analyzing high-level tasks
and selecting components based on design requirements,
as shown in Fig. [T] (a). First, it is essential to ensure that
the Planner’s planning occurs within a predefined set of
standards and the design space we define. To facilitate this,

Planner's example 1 (manipulator)

Assembler's example 1 (manipulator)

Demo Input
Design

< A robot capable of grasping objects in open spaces.
requirement

Demo Output

High-level

. . ‘A manipulator(robotic arm) with six-degree-of-freedom.
semantic analysis P L) gree-of-fi

part_1:

//function: a base for the robotic arm

//type: chassis

part 2:

//function: Base Rotation Joint.

Allows the robotic arm to rotate around the vertical axis of its base.
/type: joint

Structured list of
components

Fig. 2: Composition of the Planner example. The figure shows a part of one
example (a manipulator).

the Planner is informed of the components in the module
library, including their names and dimensions. Since different
components serve various functions across different tasks
and robots, the Planner is provided with examples of com-
ponent functionalities, specifically through two examples: a
manipulator and a mobile robot. Each example includes a
Demo Input and a Demo Output. Fig. [2] illustrates part of a
Planner example. The Demo Input corresponds to the high-
level design requirements. The Demo Output consists of two
parts: the first involves analyzing the design requirements,
including classifying the required robot, extracting and an-
alyzing key information, and performing some quantitative
calculations and reasoning processes; the second part is a
structured list of components, which includes the ID of each
required component, the function of each component within
the specific design task, and the type of each component.

C. Assembler

The Assembler is responsible for converting the Planner’s
output into assembly code. Specifically, the Assembler ana-
lyzes the topological relationships between components and
the pose information of each component, as illustrated in
Fig. [T] (b). The input to the Assembler corresponds to the
output from the Planner. In contrast to the Planner, the As-
sembler assembles the modular robot according to predefined
assembly rules. It provides the pose of each component,
which includes the specific coordinates and orientation of
each component. A recursive approach is employed to derive
these coordinates, where the position of each component is
calculated based on the position of the preceding component
plus a specified offset. The offset can be along one or more
coordinate axes. Each component has multiple connection
interfaces, and the method of connecting components de-
pends on the specific task and the role of the component in
that task, as extracted from the Planner’s output. Similar to
the Planner, two assembly examples—a manipulator and a
mobile robot—are provided for the Assembler to learn from,
as shown in Fig. 3] Each example includes a Demo Input
and a Demo Output. The Demo Input for the Assembler
corresponds to the Demo Output from the Planner, while
the Demo Output consists of the assembly code, including

Demo Input
A manipulator(robotic arm) with six-degree-of-freedom.
part_1:
//function: a base for the robotic arm
Demo Output of //type: chassis

Planner's example part 2:
//function: Base Rotation Joint.
Allows the robotic arm to rotate around the vertical axis of its base.
//type: joint

/part_1

/Ntype: chassis

//position: origin position (0,0,0)

//orientation: origin orientation.facing the positive z direction
part 1 _x_t=0;

part 1y t=0;

part 1 z t=0;

translate([part_1_x_t, part_1_y t part_1_z_t])

rotate([0,0,0])

chassis();

/lpart_2

/Ntype: joint

//position: The negative z direction of part_2 (joint) is connected to
the positive z direction of part_1 (chassis). part_2 (joint) has an
offset in the positive z direction relative to part_1 (chassis).
//orientation: origin orientation. facing the positive z direction
part 2 x_t=part 1 _x_t;

part 2 y t=part 1yt

part 2_z t=part_1_z_t+ chassis_positive_z + joint_negative_z;
translate([part 2 x_t, part 2 y t, part 2 z_t])

rotate([0,0,0])

Joint();

Demo Output

Standardized
assembly code

Fig. 3: Composition of the Assembler example. The figure shows a part of
one example (a manipulator).

component types and pose analysis, expressed in comments.
The complete set of prompts is available on our website.

IV. EXPERIMENTS

Our experiments investigate the following research ques-
tions in the subsequent three sections:

Q1: To what extent does ChatBuilder accommodate di-
verse design requirements?

Q2: How effectively does ChatBuilder accomplish specific
tasks?

Q3: Does the text-based interaction approach enhance
efficiency and reduce the barriers to robot design?

Previous robot design efforts primarily focus on specific
tasks [2], [3], with evaluation methods and metrics varying
significantly, making fair baseline comparisons difficult. In
contrast, this work addresses a broad range of design re-
quirements rather than a single specialized task. Instead of
emphasizing performance on a single task, we assess whether
ChatBuilder consistently meets diverse design requirements
while aligning with textual semantics. Following the general
principles of robot design in [25], we evaluate ChatBuilder-
generated designs based on the following criteria:

a) Assembly Validity: This criterion assesses whether
the components are free from interference or overlap and
whether they are correctly connected through designated
interfaces. We verify Assembly Validity using Adams [26], a
multi-body dynamics simulation software, to check whether
the assembled modular robot simulates well.

Highly flexible bionic robot,
able to walk on sandy or muddy surfaces.

Two-wheeled self-balancing robot,
able to perform basic material handling tasks.

Ground-moving robot capable of
autonomous movement and
performing transportation tasks.

Mimicking human structure,
suitable for complex interactions and task execution.

L

Equipped with multiple movable wheels,
able to cross larger obstacles
and perform tasks quickly.

i

Extremely flexible robot,
capable of performing complex assembly tasks.

Quadruped design, adapts to uneven terrain,
suitable for climbing and movement
in complex environments.

Automated warehouse robot,
capable of efficient cargo handling.

Fig. 4: Qualitative results generated by our approach. Given a textual input, the approach accommodates a wide range of design requirements and produces

diverse robot designs that meet the specified criteria.

Amulti-wheeled robot capable of moving freely
within a square room measuring 1000x1000.

L]
.
e L] L)
s . e® © o °
Robot suited for urban environments,) °
able to cross sidewalks .
and low obstacles. 0o’
L]
° © LY]
° . ¢ o Leg-wheel hybrid system robot,
e o ° o capable of handling
4 e ® e ° complex terrains
like sand and mud.
° & ©°o °
. .
° e % .
. ° . o °
.
Suitable for performing L4 . 0
transportation and handling tasks ° o oo
in narrow passages.. . o ®

Robot equipped with complex path planning capabilities,
capable of igation and i

Fig. 5: Visual distribution of test texts. Each point represents a text. The 78
texts are evenly distributed.

b) Requirement Compliance: This criterion evaluates
whether the designed modular robot adheres to the structural
and functional specifications described in the input text. Re-
quirement Compliance is determined through a combination
of simulation and expert judgment. Specifically, we invite
multiple experts to evaluate the generated results and collect
their scores. The average score is then calculated, and if it
exceeds 8 (out of 10), the generated result is considered to
meet the design requirements.

Similar to the approach in [25], we collect and analyze
various robot design requirements expressed in textual de-
scriptions. We exclude requirements that fall outside our
design scope, as well as duplicate or highly similar entries,
resulting in a final set of 78 test texts. The complete set of
test texts is available on our website. Importantly, rather than
focusing on the number of test texts, we prioritize ensuring
they encompass a diverse range of design requirements to
validate the breadth of ChatBuilder’s design capabilities. To
visualize this diversity, we use BERT [27] to encode the
test texts into vector representations and project them into a

two-dimensional space, as shown in Fig. El The distribution
indicates that the test texts are well spread, demonstrating
their broad coverage.

A. Results

Fig. [presents the qualitative results generated by our
approach. For each input text, we repeat the process 20 times
and record the number of instances where ChatBuilder pro-
duces assembly-valid designs or meets the specified require-
ments to calculate the success rate. Additionally, we calculate
the cosine similarity between each test text and the Demo
Inputs used for in-context learning. We define the cosine
similarity as min (T - Dy, T - Dy), where T represents the
unit vector of the test text, and D, Dy represent the unit
vectors of the two Demo Inputs of the Planner.

As shown in Fig. |6 when the similarity between the
test text and the Demo Input is high, ChatBuilder exhibits
a higher success rate in both Assembly Validity and Re-
quirement Compliance. Even when the similarity is low,
ChatBuilder can still achieve a high success rate in design
completion. However, it is important to note that lower
success rates (below 50%) are more likely to occur when
the similarity between the test text and the Demo Input
is low. Furthermore, we observe that Assembly Validity
and Requirement Compliance are consistent in most cases.
Nonetheless, when the similarity between the input text
and the Demo Input is low, ChatBuilder more frequently
generates results that satisfy Assembly Validity but fail to
meet Requirement Compliance.

Across all 20 repeated trials, the average number of
assembly-valid results is 16, while the average number of
results meeting the specified requirements is 15. We adopt
Requirement Compliance as the final evaluation criterion. In
other words, ChatBuilder generates modular robot designs

100%
90%
80%
70%

60%
50%

50%
40%

30%
20%

20%

10% EEE Assembly Validity

Requirement Compliance
0% sassmsssssssnsenne

Cosine Similarity to the Demo Input (From Most to Least Similar’

Fig. 6: Quantitative results of ChatBuilder across all 78 test texts. Green
bars indicate the success rate of generated results being assembly-valid over
20 trials, while yellow bars represent the success rate of generated results
meeting the specified requirements. The results show that lower success
rates are more likely to occur when the similarity between the test text and
the Demo Input is low.

(a) Modular robot design
generated by ChatBuilder.

(b) Simulation of tasks
with quantitative constraints.

Fig. 7: Generated result for “In a square room measuring 1000x1000, a
robotic arm positioned at the center of the room is capable of extending
its end effector to any of the four corners of the room.”

that satisfy the textual requirements with an average success
rate of 75%.

B. Case Study

To investigate the design performance of ChatBuilder on
specific tasks, we conduct several case studies.

For the input text containing quantitative constraints:

In a square room measuring 1000x1000, a robotic arm
positioned at the center of the room is capable of extending
its end effector to any of the four corners of the room.

We identify ChatBuilder’s reasoning process in the Plan-
ner’s output:

The diagonal of the square room is approximately 1414
units, requiring an arm length of at least 707 units to
extend from the center to any corner. The robotic arm’s
structure uses multiple links, with an accumulated length
greater than or equal to 707 units for both the upper and
lower arms combined.

ChatBuilder generates a six-degree-of-freedom robotic
arm. Furthermore, its position is shifted from the origin (0,
0, 0) to (500, 500, 0), where the coordinates represent (X,
y, z). The number of links composing the upper and lower
arms is increased to five. We simulate the generated design,

In an equilateral triangular room with each side measuring 500 units, a
robotic arm positioned at one corner of the triangle is capable of extending
its end effector to reach either of the other two corners of the room.

A multi-wheeled robot capable of moving freely within a square room
measuring 1000x1000.

Fig. 8: Generated results and simulation for other input texts containing
quantitative constraints.

T gy,

Simplified wheeled robot design, able to cross small obstacles.

Fig. 9: ChatBuilder demonstrates diversified generated results for the same
design requirements. It exhibits both robustness and diversity.

and the robotic arm is indeed able to reach any corner of the
square room, as shown in Fig. [7]

Fig. [§] presents the generated results for other input texts
containing quantitative constraints. Based on the dimensions
of the components, ChatBuilder can perform basic com-
putational reasoning to fulfill the textual requirements and
determine the number of components to select. It is important
to note that the Demos used for in-context learning do
not include examples of mathematical calculations, meaning
these computations are performed in a zero-shot manner.

Additionally, ChatBuilder generates diverse outputs for the
same textual requirement while ensuring compliance with the
specifications, as illustrated in Fig. 9} This demonstrates its
robustness and diversity.

C. User Study

To verify whether the text-based interaction approach in
ChatBuilder can enhance design efficiency and lower the
design barrier, we conduct a comparative experiment with
a graphical user interface (GUI), which is a design approach
that allows users to design robots by dragging components.

We invite 10 experts and 10 non-experts to participate,
with experts having extensive modeling experience and spe-
cialized knowledge in robotics design, while non-experts
have no prior experience in modeling or robotics design.

GUI ChatBuilder Freq for ChatBuilder
223s 135s | 2
549s 147s | 3

Experts
Non-experts

TABLE I: Participants’ time usage. The first two columns show the average
time to complete a design using the GUI and ChatBuilder respectively, while
the third column indicates the average number of times ChatBuilder is used.
Both experts and non-experts require less time when using ChatBuilder for

robot design.

(b) Expert-designed result
using ChatBuilder

i

(d) Non-expert-designed result
using ChatBuilder

(a) Expert-designed result
using GUI

(¢) Non-expert-designed result
using GUI

Fig. 10: Different designs obtained using two interaction tools for the same
requirement, “A flexible robot capable of performing grasping tasks.”
ChatBuilder helps non-experts create more comprehensive and refined
designs, while also producing results that are close to those of experts.

Participants are asked to complete the same design task
using both interaction methods. For each participant, we
randomly select a text from the 78 test texts, and users
are allowed to use any component from the module library
to design a modular robot that meets the requirements.
To ensure fairness, both experts and non-experts receive
diagram and code versions of the Demo used for in-context
learning, helping them gain a fundamental understanding
of the module library and design space. Additionally, we
provide training for non-experts on how to use the GUIL

As shown in Table [} both experts and non-experts spend
less time using ChatBuilder compared to the GUI, with non-
experts showing a significant reduction in design time when
using ChatBuilder. The number of times ChatBuilder is used
by both non-experts and experts is greater than 1 but less than
3. Even so, the total design time using ChatBuilder remains
shorter than that using the GUI. In practical applications,
users can repeatedly invoke ChatBuilder within a short time
frame to meet their design requirements.

Fig [I0] presents one of the design results from different
participants using different interaction tools. ChatBuilder
helps non-experts create more comprehensive and refined
designs, while also producing results that are close to those
of experts.

Inspired by NASA-TLX [28], we design a 10-point Likert
scale questionnaire to collect feedback from participants
regarding the workload of the two interaction approaches. As
shown in Fig. [T} both experts and non-experts report a lower
workload when using ChatBuilder for design tasks, with

90 @ Expert
N @ Non-expert

Workload

*

65

Expert GUI Expert ChatBuilder Non-expert GUI Non-expert ChatBuilder

Fig. 11: Participant feedback on the workload of two different interaction
methods. Both experts and non-experts report a lower workload when using
ChatBuilder for design tasks, with a more significant difference observed
among non-experts.

100%
90%

80%

70%
60%
50%
40%
30%
20%

10% | == ChatBuilder
W ChatBuilder w/o Planner

0 |
0% Cosine similarity to the demo input (From most similar to least similar)

Fig. 12: The absence of a Planner significantly reduces ChatBuilder’s
success rate in Requirement Compliance, especially when handling more
challenging tasks (where the similarity between the input text and the Demo
Input is low), to the point where the task can not even be completed.

this effect being particularly pronounced among non-experts.
These results demonstrate that ChatBuilder improves design
efficiency and lowers the design barrier for non-experts.

D. Ablation

In the ablation study, we investigate the impact of the
Planner on the generated results, as well as the effect of
the number of Demos on the generated outcomes.

We still use test texts for the trials, repeating each text
20 times, and calculate the number of results that meet the
requirements (Requirement Compliance) to determine the
success rate. Additionally, we count the number of times
different generated results occur across all repetitions to
assess Diversity.

We try using a single agent to directly learn the final
assembly code through context, eliminating the Planner. As
shown in Fig 2] its overall success rate decrease. This is
particularly noticeable for input texts that are less similar to
the Demo Input, where the success rate drop significantly.
In other words, performing an initial analysis of the input
text through the Planner before generating the final code can
improve the success rate of ChatBuilder.

We also test the impact of different numbers of Demos on
the generated results. Fig [T3] shows that when the number
of Demos increase from 1 to 2, both the success rate in
Requirement Compliance and Diversity improve. However,
when the number of Demos exceeds 2, the success rate does
not show significant changes. In fact, when the number of
Demos reaches 5, the success rate decreases. This is due

Requirement Compliance Diversity

40%
20%

0% 1
1 5 1

3 4 5

2 3 4 2
Number of Demos Number of Demos

Fig. 13: As the number of Demos increases, the success rate in Requirement
Compliance and Diversity initially rises and then decreases.

to the truncation problem [29]: more Demos exceed the
input length limit of the LLMs, causing the Demos to be
truncated and reducing the success rate. Additionally, we find
that when the number of Demos exceeds 2, the Diversity of
the generated results decreases, and the results become more
monotonous. This is because ChatBuilder tends to directly
imitate the existing Demos, which limits its creative ability.

We also compare the impact of using different LLMs on
the experimental results. We try GPT-3.5, GPT-4 and GPT-
40. It is found that GPT-40 outperform the other models in
both response time and success rate.

E. Real World Experiment

We build some prototypes based on the design diagrams
generated by ChatBuilder. We select a stepper motor as the
drive for the real-world robot. The motor has a torque of
0.4 N'm, a length of 30 mm, a width of 42 mm, a shaft
length of 22 mm, and a shaft radius of 5 mm. We 3D print
the modular components and assemble them to create a real-
world modular robot. For 3D printing, we choose the resin
material.

For the manipulator generated by ChatBuilder, we use the
gripper as the end-effector, allowing the manipulator to pick
up an object and place it in a target location, as shown in
Fig[T4] (a). For the mobile robot generated by ChatBuilder, it
smoothly navigate around obstacles and pass through narrow
passages, as shown in Fig[T4](b). The control method used in
the experiment is a human-in-the-loop control. More precise
control can enable the robot to exhibit better performance.

V. DISCUSSIONS

In this study, we acknowledge that while research [30]
suggests that LLMs are not particularly strong in continuous
numerical reasoning, defining modular components clearly
helps guide the design process within a discrete design space,
enabling more effective solution generation using LLMs.

Regarding evaluation metrics, we recognize that assessing
robot design involves multiple factors, including structural
soundness, control efficiency, and reliability. In this work,
we rely on expert judgment to account for these aspects. The
success rates in our preliminary study may be influenced by
subjectivity, as evaluation criteria vary across design require-
ments. To mitigate this, we incorporate multiple experts and
take the average of their ratings. This work represents an
initial step in exploring LLMs’ capabilities in robot design,
and we continue to refine both our design and evaluation
system.

(a) Input: Three degrees of freedom
robotic arm, designed for minimalism.

L
-

Real world robot

(b) Input: Robot capable of moving
on flat indoor surfaces.

Real worldTobot

Fig. 14: Real world experiments. We build several prototypes and use them
to complete the tasks.

VI. CONCLUSIONS

In this paper, we present a novel approach that leverages
LLM as intelligent agents for automating the design of
modular robotic structures. The proposed method enables
users to generate detailed robot designs from simple textual
descriptions, demonstrating effectiveness in both simulated
and real-world environments. This approach reduces the
manual effort required for design and lowers the technical
barriers to creating complex robotic systems.

However, this method has certain limitations. Primarily,
the focus has been on the structural design of modular
robots, with less attention given to the control aspects.
Additionally, although ChatBuilder can modify the robot’s
structure to meet design requirements, it currently does
not account for factors such as energy consumption and
power. Furthermore, while ChatBuilder is capable of han-
dling tasks with quantitative constraints, its success rate is
lower compared to tasks without such constraints. In the
future, we will incorporate additional factors of robot control
to further enhance modular robot design. We will also involve
more participants to improve the evaluation of our system.
While this work primarily addresses the structural design
of modular robots, we envision leveraging advancements in
generative artificial intelligence to push the boundaries of
automated robot design, extending beyond modular systems
to more versatile and intelligent robotic solutions.

ACKNOWLEDGMENT

This work has been supported by the National Key Tech-
nologies R&D Program under Grants No.2024YFB4708802,
the NSFC under Grants No0.92148205 and 62133009, the
Natural Science Foundation of Jiangsu Province Major

Project under grant BK20232008, Jiangsu Key Research and
Development Plan under Grant BE2023023-4, the Joint Fund
Project 8091B042206 and the Fundamental Research Funds
for the Central Universities.

[1]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

J. Hu, J. Whitman, M. Travers, and H. Choset, “Modular robot design
optimization with generative adversarial networks,” in 2022 Interna-
tional Conference on Robotics and Automation (ICRA), pp. 4282—
4288, IEEE, 2022.

A. Zhao, J. Xu, M. Konakovi¢-Lukovi¢, J. Hughes, A. Spielberg,
D. Rus, and W. Matusik, “Robogrammar: graph grammar for terrain-
optimized robot design,” ACM Transactions on Graphics (TOG),
vol. 39, no. 6, pp. 1-16, 2020.

R. Desai, M. Safonova, K. Muelling, and S. Coros, “Automatic design
of task-specific robotic arms,” arXiv preprint arXiv:1806.07419, 2018.
S. Ha, S. Coros, A. Alspach, J. M. Bern, J. Kim, and K. Yamane,
“Computational design of robotic devices from high-level motion spec-
ifications,” IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1240-
1251, 2018.

'W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” arXiv preprint arXiv:2307.05973, 2023.

Y. Zhu, S. Qiao, Y. Ou, S. Deng, N. Zhang, S. Lyu, Y. Shen, L. Liang,
J. Gu, and H. Chen, “Knowagent: Knowledge-augmented planning for
llm-based agents,” arXiv preprint arXiv:2403.03101, 2024.

S. H. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for
robotics: Design principles and model abilities,” leee Access, 2024.
J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

G. Chen, S. Dong, Y. Shu, G. Zhang, J. Sesay, B. F. Karlsson, J. Fu,
and Y. Shi, “Autoagents: A framework for automatic agent generation,”
arXiv preprint arXiv:2309.17288, 2023.

Y. Liang, C. Wu, T. Song, W. Wu, Y. Xia, Y. Liu, Y. Ou, S. Lu,
L. Ji, S. Mao, et al., “Taskmatrix. ai: Completing tasks by connecting
foundation models with millions of apis,” Intelligent Computing,
vol. 3, p. 0063, 2024.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou, et al., “Chain-of-thought prompting elicits reasoning in
large language models,” Advances in neural information processing
systems, vol. 35, pp. 24824-24837, 2022.

C. Li, J. Liang, A. Zeng, X. Chen, K. Hausman, D. Sadigh,
S. Levine, L. Fei-Fei, F. Xia, and B. Ichter, “Chain of code: Reasoning
with a language model-augmented code emulator,” arXiv preprint
arXiv:2312.04474, 2023.

Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu,
Z. Wu, T. Liu, et al., “A survey on in-context learning,” arXiv preprint
arXiv:2301.00234, 2022.

Z. Nie, R. Zhang, Z. Wang, and X. Liu, “Code-style in-context learning
for knowledge-based question answering,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, pp. 18833-18841, 2024.
S. Farritor and S. Dubowsky, “On modular design of field robotic
systems,” Autonomous Robots, vol. 10, pp. 57-65, 2001.

S. Farritor, S. Dubowsky, N. Rutman, and J. Cole, “A systems-

level modular design approach to field robotics,” in Proceedings of

IEEE International Conference on Robotics and Automation, vol. 4,
pp- 28902895, IEEE, 1996.

C. H. Belke and J. Paik, “Mori: a modular origami robot,” IEEE/ASME
Transactions on Mechatronics, vol. 22, no. 5, pp. 2153-2164, 2017.

A. Castano, A. Behar, and P. M. Will, “The conro modules for
reconfigurable robots,” IEEE/ASME transactions on mechatronics,
vol. 7, no. 4, pp. 403—409, 2002.

R. J. Alattas, S. Patel, and T. M. Sobh, “Evolutionary modular robotics:
Survey and analysis,” Journal of Intelligent & Robotic Systems, vol. 95,
pp. 815-828, 2019.

R. Desai, Y. Yuan, and S. Coros, “Computational abstractions for
interactive design of robotic devices,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1196-1203,
2017.

V. Megaro, B. Thomaszewski, M. Nitti, O. Hilliges, M. Gross, and
S. Coros, “Interactive design of 3d-printable robotic creatures,” ACM
Transactions on Graphics (TOG), vol. 34, no. 6, pp. 1-9, 2015.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

J. H. Lee, H. Oh, J. Yoon, S.-J. Lee, T. Jin, J. Hwangbo, and S.-H. Bae,
“Robotsketch: an interactive showcase of superfast design of legged
robots,” in ACM SIGGRAPH 2024 Emerging Technologies, pp. 1-2,
2024.

L. Makatura, M. Foshey, B. Wang, F. HidhnLein, P. Ma, B. Deng,
M. Tjandrasuwita, A. Spielberg, C. E. Owens, P. Y. Chen, et al.,
“How can large language models help humans in design and man-
ufacturing?,” arXiv preprint arXiv:2307.14377, 2023.

J. Gohde and M. Kintel, Programming with OpenSCAD: A Beginner’s
Guide to Coding 3D-Printable Objects. No Starch Press, 2021.

N. Bezzo, A. Mehta, C. D. Onal, and M. T. Tolley, “Robot makers:
The future of digital rapid design and fabrication of robots,” IEEE
Robotics & Automation Magazine, vol. 22, no. 4, pp. 27-36, 2015.
R. Ryan, “Adams—multibody system analysis software,” Multibody
systems handbook, pp. 361-402, 1990.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 conference of the North American chapter
of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.
S. G. Hart, “Nasa-task load index (nasa-tlx); 20 years later,” in
Proceedings of the human factors and ergonomics society annual
meeting, vol. 50, pp. 904-908, Sage publications Sage CA: Los
Angeles, CA, 2006.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
“Transformer-xI: Attentive language models beyond a fixed-length
context,” arXiv preprint arXiv:1901.02860, 2019.

S. Kambhampati, “Can large language models reason and plan?,”
Annals of the New York Academy of Sciences, vol. 1534, no. 1, pp. 15—
18, 2024.

	INTRODUCTION
	RELATED WORK
	METHOD
	Module Library
	Planner
	Assembler

	EXPERIMENTS
	Results
	Case Study
	User Study
	Ablation
	Real World Experiment

	DISCUSSIONS
	CONCLUSIONS
	References

