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Abstract— Modular robotic structures simplify robot design
and manufacturing by using standardized modules, enhancing
flexibility and adaptability. However, physical constraints and
the need for manual input in design and assembly limit their
potential. Current methods to automate this process still require
significant human effort and technical expertise. This paper
introduces a novel approach that employs Large Language
Models (LLMs) as intelligent agents to automate the creation of
modular robotic structures. We decompose the modular robot
creation task and develop two agents based on LLM to plan and
assemble the modular robots from text prompts. By inputting
a textual description, users can generate robot designs that are
validated in both simulated and real-world environments. This
method reduces the need for manual intervention and lowers
the technical barrier to creating complex robotic systems.

I. INTRODUCTION

The development of modular robotic structures has
emerged as a powerful approach to simplify the robot de-
sign and manufacturing process. By decomposing complex
systems into standardized modules, it becomes possible to
reduce development cost and enhance the flexibility, scala-
bility, and adaptability of robotic systems. It is essential for
modular robots, with their inherent reconfigurability, to be
adaptable to different tasks and environments.

However, the modular design approach has limitations.
The physical constraints imposed by fixed and standard-
ized modules can restrict the adaptability and versatility
of the overall system. For example, the length of robot
links can limit the reachability required by a pick-and-place
task. The payload of a mobile base can be too small for
object transportation tasks. As a result, the design of these
standardized modules typically requires manual input, which
can be time-consuming and prone to human error. Even
more challenging is the task of selecting and assembling
these standard modules into a coherent robotic structure —
a process that also demands significant manual effort and a
high level of technical expertise.

Existing methodologies have sought to address these chal-
lenges by using parameterization techniques to streamline
the design process and inherently avoid sub-optimal designs,
which is a standard procedure in computer-assisted designs
[1] . While these approaches offer some degree of automa-
tion, they still rely heavily on human intervention to tune the
parameters, which possess a considerable technical barrier
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for non-experts. Although there are some automated robot
design methods, such as optimizing robot design based on
evolutionary algorithms [2] or achieving end-to-end robot
design through machine learning [3]. Unfortunately, these
techniques can be rather computationally and data inefficient.

Recently, LLMs such as ChatGPT have demonstrated
remarkable effectiveness in understanding natural language
and handling complex tasks. Their success in diverse appli-
cations [4] suggests that LLMs could be a powerful tool in
automating and simplifying the design process of modular
robotic structures, potentially reducing the complexity and
technical barriers associated with traditional methods.

In this paper, we propose a novel approach that uses
LLMs as intelligent agents to automate the design of modular
robotic structures. We divide the general task into two
subtasks and design two agents to complete them separately.
By simply inputting a textual description of the desired
robot structure, users can obtain the corresponding robot
design. We demonstrate the generated results and validate the
effectiveness of LLM-generated structures in both simulated
and real-world environments. Experiments have proven that
our method can design effective modular robotic structures,
which simplifies the design difficulty of modular robots and
lowers the technical threshold, bringing new significance to
the automation of modular robot implementation.

II. RELATED WORK

We review related works on LLMs, modular robotics and
automated robot design techniques.

a) LLMs: In recent years, LLMs have shown promising
application prospects in robotics. Vemprala et al. [5] pro-
posed several principles for applying ChatGPT in robotics.
Subsequent work has focused on optimizing the structure
of prompts. Singh et al. [6] introduced a procedural LLM
prompt structure, enabling the planning function to transcend
different environments, robotic capabilities, and tasks. With
the integration of Vision Language Models (VLMs), robots
can make better plans by considering the current environment
[7], [8].

Meanwhile, leveraging GPT-4’s powerful multi-modal
processing capabilities [9], numerous works have focused
on using LLMs as agents to perform complex planning
or generation tasks. Zhu et al. [10] proposed KNOWA-
GENT, a framework that mitigates planning hallucinations
by incorporating external action knowledge into synthesized
trajectories. Chain-of-Thought [11] and Chain-of-Code [12]
improve model performance on arithmetic, commonsense,
and symbolic reasoning tasks. Chen et al. [13] introduced an



innovative framework called AutoAgents, which can adap-
tively generate and coordinate multiple specialized agents
based on different tasks. Yuksekgonul et al. [14] introduced
TextGrad, a framework that performs automatic “differen-
tiation” through text execution. Liang et al. [15] proposed
TaskMatrix.AI, which connects foundational models to mil-
lions of APIs to accomplish tasks.

b) Modular Robot: Unlike traditional robotic systems,
modular robots are composed of interchangeable and recon-
figurable units, allowing for easy customization and adap-
tation to different tasks. In early research [16], [17], a pre-
defined module library, including joints, links, power units,
etc., was used to assemble robots. Similarly, Baca et al. [18]
proposed SMART, a method based on three types of modules
from a library. These can be assembled in various ways to
create different robots for different tasks. Pacheco et al. [19]
introduced the Fable system, which consists of self-contained
modules equipped with sensors and actuators, allowing users
to easily assemble a wide range of robots within seconds. As
modular robotics evolved, new types of structures emerged.
Lyder et al. [20] introduced the Odin robot, which is based
on a deformable lattice and consists of an extendable set
of heterogeneous modules. Unlike previous modular robots,
they presented the design and implementation of a cubic
closed-packed (CCP) joint module, a telescoping link, and
a flexible connection mechanism. In summary, these studies
primarily focused on the handcrafted modular design of robot
structures, while our work intends to automatically adjust the
design parameters using LLMs.

c) Automated Robot Design: Previous research has
focused on the automatic design of modular robots. The
goal of these studies is to find the optimal way to assemble
modules from a library to meet the specific needs of a
given task. Evolutionary algorithms have been widely used
in modular design [2]. Hornby et al. [21], building on
evolutionary algorithms and combining them with generative
representations, demonstrated an automatic design system
that produces complex robots by exploiting the principles of
regularity, modularity, hierarchy, and reuse. Zhao et al. [22]
proposed RoboGrammar, which generates optimized robot
structures to traverse given terrains. They introduced Graph
Heuristic Search for efficiently searching in combinatorial
design spaces. However, these methods often require multiple
iterations of optimization and high computational power,
which somewhat limits the application of evolutionary al-
gorithms in modular robot design. Hu et al. [3] presented
a novel method based on generative adversarial networks
(GANs) that learns a one-to-many mapping from tasks to a
distribution of designs. They applied this method to construct
locomoting modular robots for terrains with varying obstacle
heights and infill. However, this approach heavily relies on
the data distribution by itself.

Some research has explored more interactive ways to
design robots [23], where users can quickly design robots
by dragging graphical symbols. In the method proposed by
Lee et al. [24], users can design the initial shape of a robot
by sketching, but this approach is still some distance away

from realizing a fully functional robot.
As LLMs continue to demonstrate remarkable results in

various fields, some studies have explored the possibility of
LLMs guiding robot design [25]. However, this research is
mostly conceptual. Similar to our work, Ryan et al. [26]
tried to design robots from text descriptions. However, their
method only generates a single mesh and does not decom-
pose the mesh into further component assembly instructions.

III. METHOD

Overall, our approach aims to leverage the excellent
natural language understanding and code editing capabilities
of LLMs. After understanding the user’s requirements for a
modular robot, the LLM generates code that can model the
structure of the modular robot. However, achieving this goal
requires considering many issues. We first need a module
library to facilitate the LLM’s selection from it. Additionaly,
a complete piece of code for modeling a modular robot is
complex and lengthy, making it difficult for the LLM to
accomplish the entire modeling task in one go. Inspired by
the studies on Chain of Thoughts [11] and Chain of Code
[12], we break down the overall task into two subtasks:
the planning of modular units and the assembly of those
units. Specifically, our ChatBuilder involves two agents: the
Planner and the Assembler, as shown in Fig 1. Planner
is responsible for the geometric planning of modular units
and connection planning, while Assembler is responsible
for inferring the local displacement of modular units and
executing the assembly. Both agents are based on ChatGPT,
and we utilized different prompt engineering techniques to
facilitate their distinct functionalities. Finally, ChatBuilder
integrates the code generated by both agents and produces
a 3D design drawing of the modular robot structure that
matches the input text.

A. Module Library

Before all the work, we first need to establish a module
library. OpenSCAD [27] was chosen for programming and
modeling due to its simple programming language and fast
compilation. We designed the module library in OpenSCAD
by writing each modular unit as a callable function. This
function can generate modular units of different sizes by
inputting various parameters. Specifically, our module library
includes four types of callable modular units: Link, Joint,
Chassis and Wheel, which can change in size and shape
according to the parameters. Detailed code for each part
in the module library can be found in the supplementary
material.

B. Prompt Engineering

For Planner and Assembler, we design two distinct
prompts. As shown in Table II, each prompt includes a
General Description, a Subtask Description, an Input Ex-
ample, and an Output Example. The General Description is
the same for both prompts, while the Subtask Description
is defined based on the specific tasks that each agent needs
to accomplish. The Input Example for Planner’s prompt is



Fig. 1. Overview of ChatBuilder. ChatBuilder consists of two agents: Planner and Assembler. The user only needs to input requirements in text form.
Planner first retrieves the input text and extracts the geometry information. It then calls the function in module library and inputs the information to generate
the modular units. Following this, it plans the topology among all the modules. Assembler, on the other hand, reason the local displacements based on the
code output by Planner, issues assembly instructions. Finally, we can get a three-dimensional design drawing of the modular robot that matches the text.

the input text, with the Output Example being the code
capable of performing the corresponding parts design tasks.
For Assembler, the Input Example is the output code from
the parts design agent, and the Output Example is code that
performs the corresponding parts assembly.

For the example code, we use the four established modular
units to design a six-degree-of-freedom robotic arm structure
and a wheeled robot structure with two steering front wheels
and two drive rear wheels. Inspired by previous work [6] ,we
add extensive comments in the code, which include reasoning
guidelines and rules that must be followed (such as rules
for selecting modular units and assembling parts) for the
agent to reference. The complete prompts can be found in
the supplementary material.

C. Planner

The Planner is mainly responsible for understanding the
semantics of the input text, and planning the geometry
of individual modular units and the topology among all
required modular units, and outputting code that performs
the corresponding tasks.

a) Modular geometry planning: Our Planner analyzes
the input text to extract geometry parameters for modular
units. These parameters include motor dimensions (e.g., mo-
tor width, motor height, shaft length, shaft radius, and screw
hole positions) and custom size information (e.g., wheel
radius, chassis length, chassis width, and wall thickness). The
Planner then uses these parameters to call predefined modular

unit functions to generate the modular units, as shown in
Fig 1 (a). If the input text lacks specific details, our Planner
automatically configures appropriate default settings. This
functionality allows for flexible modification of the modular
unit structure based on partial user requirements.

b) Modular connection planning: After completing the
above work, the Planner plans the topology among all
modular units one by one. The planner will consider both the
overall (input text) and the local (type of the previous part),
select the modules that are currently required from the mod-
ule library, and specify the assembly order of the modules by
numbering them, as shown in Fig 1 (b). Specifically, all the
modular units have appeared in the Output Example as code
comments. The agent only needs to refer to the example to
select and plan the parts. This organized numbering system
facilitates the assembly process for the Assembler.
D. Assembler

This output code of Planner serves as the input for the
Assembler, which is primarily responsible for understanding
the topology information contained in the code, deriving the
local displacement of each modular unit, providing instruc-
tions to transfer each modular unit to the correct position,
and outputting code that performs the corresponding tasks.

a) Local displacement reasoning: The Assembler pro-
cesses the output from the Planner to calculate local dis-
placements, specifically the 3D coordinates of each part.
This agent employs a recursive approach to derive these
coordinates, where the position of each part is computed



Difficulty Normal Normal Difficult

Input
Text

Design a three degree of freedom robotic
arm structure. It has a base joint,
a shoulder joint and an elbow joint.

Like a four wheeled robot, design a wheeled
robot structure with six fixed wheels.

Design a wheeled robot. It has four fixed
wheels. And It has a four-degree-of-freedom
robotic arm on the body. The arm has a
base joint, a shoulder joint, an elbow joint
and a wrist joint.

Results

SucR 100% 100% 80%

TABLE I
GENERATION RESULTS FOR INPUT TEXTS OF DIFFERENT DIFFICULTY LEVELS. SUCR REFERS TO THE SUCCESS RATE.

Planner Assembler
General Description All the same
Subtask Description Subtask1 description Subtask2 description

Input Example Input text Parts design code
Output Example Parts design code Parts assembly code

TABLE II
THE MAIN COMPONENTS OF THE PROMPTS FOR THE TWO AGENTS.

based on the position of the preceding part plus a specified
offset, as shown in Fig 1 (c). The offset can be along multiple
coordinate axes or a single coordinate axis.

b) Assembly execution: After determining the local dis-
placements, the Assembler generates assembly instructions
by coding the correspondence between each part and its
calculated coordinates. These instructions guide the assembly
process, ensuring that the parts are correctly assembled into
the final structure, as shown in Fig 1 (d). We leverage the
semantic understanding capability of the LLM to pair com-
ponents with their displacements. Specifically, the assembly
instructions involve moving each part to its corresponding
coordinates. The same operation is performed for each part,
and once all parts are moved to their correct positions, an
assembly is completed, as shown in Fig 1 (e).

IV. EXPERIMENTS
For the selection of the LLM, preliminary experiments

revealed that GPT-4o demonstrates superior performance in
both generation quality and time efficiency. Therefore, in
the subsequent experiments, GPT-4o will be used as the
foundational model. To facilitate subsequent simulation and
manufacturing tasks, ChatBuilder outputs three types of 3D
design diagrams: an assembly diagram of the modular robotic
structure, an exploded view, and a parts list. For simulation
validation, we export the modular robotic structure designed
by ChatBuilder as STL files and import them into Adams
software to verify the function of the generated robot.

Fig. 2. Results of fine-tuning in different cases. For Case I, ChatBuilder
can remove a part from a specific location; for Case II, ChatBuilder can
replace parts according to requirements.

A. Generation Results

We classify the input text into two levels of difficulty—
normal and difficult—based on its similarity to the provided
examples. By inputting texts of varying difficulty levels, we
obtain a diverse range of generated results. For each input
text, we conduct five trials and record the number of times
the generated result matched the input requirements. We then
calculate the success rate by dividing this count by five. The
experimental results are illustrated in Table I. The results
demonstrate that for normal level texts, ChatBuilder can ac-
curately design robotic structures that meet the requirements.
For difficult level texts, ChatBuilder has a certain probability
of failure, but with repeated attempts, it can still design
robotic structures that meet the required specifications.



Fig. 3. Generation results and simulation after adding leg, leg-wheel and
mecanum wheel components.

Input Text SucR
Develop a robot equipped with four wheels. 100%
Construct a mobile robot equipped with a set of four wheels. 100%
Produce a robotic system that uses four wheels for locomotion. 80%
Design and create a robot featuring four wheels for movement. 80%

TABLE III
STABILITY VERIFICATION RESULTS OF CHATBUILDER.

B. Fine-tuning Feature

This experiment verifies whether ChatBuilder can under-
stand slight modifications to the input text, thereby enabling
more refined designs. For example, adding or modifying
requirements on the original design specifications. We test
two cases, and the experimental results are shown in Fig 2.

For case I, we want to remove a specific part from the orig-
inal 6-DOF robotic arm structure. We find that ChatBuilder
can accurately identify and remove the corresponding part
and make the necessary adjustments to the assembly, result-
ing in a robot structure that meets the new requirements.
For case II, we aim to modify the existing wheeled robot
structure by changing all four wheels to steering wheels.
We found that ChatBuilder replaced the original link-type
parts with joint-type parts at the appropriate locations, trans-
forming the fixed wheels into steering wheels. These cases
demonstrate that ChatBuilder can not only design the overall
structure of modular robots but also make adjustments to
specific details.

C. Parts Expansion

By adding more new components, ChatBuilder can gen-
erate a wider variety of modular robotic structures. For this
experiment, we add the following new components to the
parts library: leg, leg wheel and mecanum wheel. We include
descriptions of the new components in the prompt. After
completing this, we input some new text, and ChatBuilder

Fig. 4. Real-world experimental validation of a three-degree-of-freedom
robotic arm structure.

generate modular robotic structures that matched the text
descriptions, as shown in the Fig 3. We simulate these struc-
tures, and the experimental results show that the structures
designed by ChatBuilder are all effective.

D. Stability Verification

We input different text descriptions with the similar mean-
ing and observe the output results to test the stability of
ChatBuilder’s natural language understanding. We design
five different text inputs, all expressing the idea of ‘Design
a wheeled robot with four wheels.’ For each text input,
we conduct five attempts, record the number of successful
outcomes, and calculate the success rate. The experimental
results are shown in the Table III.

E. Real World Experiment

To validate the effectiveness of the modular robotic struc-
tures generated by ChatBuilder in the real world, we select a
42 stepper motor as the drive for the real-world robot. This
motor has a torque of 0.4 Nm, a length of 30 mm, a width
of 42 mm, a shaft length of 22 mm, and a shaft radius of 5
mm. We input the design requirements into ChatBuilder in
text form. According to the generated 3D design diagrams,
we 3D print the modular unit structures and assemble them
to create a real-world modular robot. For 3D printing, we
chose the resin material.

ChatBuilder generate a modular robotic structures from
text inputs, as shown in Fig 4. We design a simple task
with the end effector being a gripper. Task involves using the
gripper to pick up an object and place it in a target location.
This experiment demonstrate that the modular robotic struc-
tures generated by ChatBuilder are effective, manufacturable,
and capable of performing simple tasks under reasonable
control. The control method used in the experiment is a
simple human-in-the-loop control. More complex and precise
control can enable the robot to exhibit better performance.

V. DISSCUSIONS

A. Multiple Agents

In our method, the design of agents is a crucial issue.
Based on our division of the overall task, the modeling task
of a modular robot can be divided into two subtasks: the



Normal-I Normal-II Difficult
ChatBuilder-two agents 100% 100% 80%
ChatBuilder-four agents 100% 20% 0%
ChatBuilder-w/o comments 80% 20% 0%

TABLE IV
CHATBUILDER WITH FOUR AGENTS IS UNABLE TO COMPLETE COMPLEX

TASKS. THE PERFORMANCE SIGNIFICANTLY DETERIORATES WITHOUT

ADDING COMMENTS IN THE PROMPT.

planning of individual modular units and the assembly of
multiple modular units. The first subtask primarily involves
modular geometry and modular connection planning, while
the second subtask focuses on local displacement reasoning
and assembly execution. Therefore, we attempted to accom-
plish these tasks using both two agents and four agents.
The two-agent approach refers to the Planner and Assembler
mentioned in the method section. When further dividing the
tasks of the Planner and Assembler, we derive two agents
each, resulting in a total of four agents.

We conducted experiments mentioned in the “Generation
Result” section using these two approaches. We used text in-
puts of normal and difficult levels of complexity, performing
five trials each to calculate the success rate. The experimental
results are shown in the Table IV. The four-agent approach
can respond correctly to simple text inputs; each agent only
needs to imitate the example to output the correct local code.
However, for more complex text inputs, which have a lower
degree of similarity to the example in the prompt, each agent
focuses only on local code and overlooks the consistency of
the overall code. In contrast, the design of the two agents
(Planner and Assembler) can coordinate closely related local
code, ensuring code consistency.

The prompts for the four agents mentioned in the experi-
ment were simply modified from the prompts of the Planner
and Assembler. To achieve better results with the four agents,
additional engineering to the prompts are necessary. We also
attempted to use a single agent to complete the entire task.
However, because the code to generate the modular robot is
too long and complex, a single agent was not effective to
perform the task limited by the token length of GPT-4o.

B. Comments in code

For the example code in the prompts, we explored the
impact of adding comments versus not adding comments on
the generation results. Similarly, we input texts of varying
difficulty levels for the experiment, and the results are shown
in the Table IV. It can be observed that the performance
of code generation significantly declines without comments.
Our comments contain a substantial amount of reasoning,
assembly rules, and other information. Without these details,
ChatBuilder can only mimic the example when writing code,
making it incapable of performing more advanced reasoning
for more complex text inputs.

C. Task-based Inputs

In real world, traditional robot design is usually task-
based, while we note that for our approach the input texts

Fig. 5. A successful case of task-based input.

are mainly the description of the robot form but not its
function, where the agents are explicitly instructed on the
specific structure of the robot to be generated. To verify
ChatBuilder’s performance with task-based inputs, we also
experimented with task-based textual input. For the input
“Design a wheeled robot that can walk on uneven ground”,
ChatBuilder designed a robot with four leg-wheels, as shown
in Fig 5, the chassis has a high distance from ground, and leg-
wheels are suitable for walking on uneven ground. The result
demonstrates that ChatBuilder understood the semantics and
made a correct design. However, for the inputs “Design a
robot that can run fast”, ChatBuilder made some errors in the
selection and assembly of parts. The front and rear wheels
are not the same height.

The keywords ‘wheeled robot’ and ‘walk’ have a high
degree of similarity with those in the example, which allows
ChatBuilder to find reasoning grounds in the example and
make a correct design. However, when only keywords like
‘robot’ and ‘run fast’ are input, ChatBuilder cannot find accu-
rate reasoning grounds in the example, leading to situations
where the results are partially correct but partially incorrect.
More work should be taken to further study the capability
of LLM for task-based designs.

VI. CONCLUSIONS

In this paper, we presented a novel approach that leverages
LLM as intelligent agents for automating the design of
modular robotic structures. The proposed method enables
users to generate detailed robot designs from simple textual
descriptions, demonstrating effectiveness in both simulated
and real-world environments. This approach reduces the
manual effort required for design and lowers the technical
barriers to creating complex robotic systems.

However, this method comes with certain limitations. Pri-
marily, the focus has been on the structural design of modular
robots, with less consideration given to the control aspects
of the robots. Although variable modular units allow users
to select electronic components (such as motors, batteries,
sensors, etc.) based on actual conditions, which enhances the
system’s flexibility and variability, this also means that the
design of the control aspects of modular robots needs to be
completed with substantial human supervision. Additionally,
the generated designs are largely description-driven, relying
on low-level structural details to be provided in the input text.
For task-based designs, ChatBuilder can perform some of
the work well, but it may require more examples or detailed
prompts to improve the accuracy of the designs.
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